p进数:展开有理数何必是实数?

。实数就如同当空烈日一般,统治着整个数学世界。文艺复兴时期的代数学家为了解方程,引入了复数

。 但即便是复数这样自然的构造,也历经了几百年才被数学界所接受。实数的地位似乎是不可置疑的。到了 19 世纪末 20 世纪初,数学家们惊讶地发现,包含

更像是月亮:月亮固然是夜空中最为明亮的,也时常盖过群星的光辉,但是星星的存在也提示着我们,这个宇宙中有更加辽远的空间等待探索。

进数的是德国数学家亨泽尔(Kurt Hensel),而在他之前的库默尔(Ernst Kummer)已经隐含地使用过了这种奇妙的数字。如同库默尔一样,亨泽尔的原始工作也很难读懂。他的文章发表于 1897 年,此时“域”的概念才仅仅诞生了 4 年:1893 年,韦伯(Heinrich Martin Weber)第一次定义了域,它是一个带有加法和乘法两种运算的集合

)也纳入进来。如果去掉乘法逆元的条件,上述定义就变成了所谓的交换环,最典型的例子就是整数环

的多项式存在有理根当且仅当它存在整数根),所以我们通常把它们放在一起考虑。但是这两个对象的性质都很“糟糕”。例如,我们想要判断对于某一对非零的

,但是反过来并不一定成立。那实数解的存在性对有理数解有帮助吗?答案是肯定的,为此我们需要定义希尔伯特符号(

。这个定义同样初等,但是稍微麻烦一些,有兴趣的读者可以自行查阅参考文献[1],我们之后不会涉及这个定义本身。重点在于,这个定义是可以直接计算的,所以很方便判断。数学家们证明了一个惊人的定理:

当且仅当方程在这个域中存在解呢?如果的确如此,那似乎我们就能把有理数解看作是这些所有域中解的“交集”。

上面的定理其实是在讲局部与整体的对应。这听起来似乎匪夷所思,明明域变大了,却从整体变成了局部。要解释这一点,我们要先了解一些几何学。

作为环的性质非常相似,比如这两个环都能做带余除法,因此它们都是欧几里得整环。这里

为系数的多项式环,这个系数域就算换成别的域也会有很多相似之处,但是我们这里需要用到一些分析的方法,所以复数最为方便。顺带着,它们的分式域

上的亚纯函数:它们的分母在个别点不一定不为零,所以这些函数会有趋于无穷的极点,但是这些点都是离散的,很容易处理。对于

而言,局部显然就是指其中的任何一个点。这些亚纯函数在任何点附近能展开成洛朗级数,就如同全纯函数(处处解析)能在任何点展开成泰勒级数一样,只不过洛朗级数允许存在

为什么可以这样写呢?对于一般的实数除法,商的小数点后的数字会越来越长,因为我们默认数字的位数越靠后,其“大小”就越小,所以我们才能写出

进展开。这样的展开与小数的进制表示非常相似,这也也解释了它的名字。但这纯粹是形式上的。我们还需要解释三个问题:

这个定义原本是库默尔(Ernst Eduard Kummer)与戴德金(Julius Wilhelm Richard Dedekind)为了解决代数数域中素元分解不成立而提出的(这也是为什么叫做理想:一个非常“理想”的子集),代数几何学家们却找到了它的几何意义。我们用

生成的理想)。这是一个极大理想,也就是说,它不是任何理想的真子集。实际上,对于

这样简单的类比其实还不能称为“几何”。这要等到格罗滕迪克(Alexander Grothendieck)创造性地提出概型理论,研究

的数论才能真正统一在一起。在这套理论中,环的素理想(本文中不需要这个概念)被称为点,而极大理想则是闭点。这套理论需要更加艰深的背景知识,本文就不做介绍了。总之,上面我们用到的洛朗展开和

进展开,都是对应两个环的闭点。如果接受这样的设定,你就会发现“局部”的说法没什么问题。

中的展开,也就是小数展开,它算什么呢?它其实是对应有理函数在无穷远点的洛朗展开。如图所示

复平面上的任何点都可以对应于球面上的某点,只需要连接球的顶端与复平面上的点,线段一定会交于球面上的一点。这样就建立了复平面与球面(除了顶端一点)的一一对应。而如果在复平面上以任何方向接近无穷,转换到球面上,就一定会逼近顶点。这样我们就可以把这个球面当作是

,该怎么办呢?直观来看,定义整数允许了负数的存在。但是负数究竟是什么?比如说

的子集。上面两次扩张,都是允许了某种新的运算,然后通过取等价类的方式来构造的。

所以我们需要对序列加以限制,然后取某种等价类。限制后的序列被称为柯西列,定义如下:对于有理序列

中收敛序列的自然推广。当然两个柯西列有可能收敛于同一个数,所以我们还需要等价关系

这样只要有距离函数,就能定义柯西列,就能定义新的域。这个过程被称为完备化,因为我们称任何柯西列都收敛的域为完备域。总结一下,就是说

的完备化方案了。我们平常计算实数的时候倒并不会总是考虑柯西列,反而是小数展开更常用;同样,实际计算

我们自然而然会问,是不是任意给一个多项式方程,其存在有理解的条件都等同于存在实数解和所有

进数解?答案是否定的,有不少多项式不成立这个结论。这激发起了数学家们的好奇心:究竟哪些多项式有类似的性质呢?我们把这个方向称为局部—整体原则,直到今天,它所催生的新知识还在源源不断滋养着整个数论的研究。

的确,数论是距离现实世界非常遥远的一个学科。近些年来,有部分数论被应用于密码学。而要直接应用于物理,以描述现实世界,并被大多数物理学家所接受,这样的工作目前还不多。

进数与实数从逻辑上讲没有任何高下之分,他们都可以做导数,做积分,大多数你能想到的分析工具,都能平等地用到它们身上。那为什么我们生活在实数世界,而不是

还真有人想到了这种可能性。弦论中,弦扫过的世界面是用一维复流形(也就是黎曼面)描述的,但是如果把黎曼面换成是

进弦论。目前来看,这方面的研究成果还处于玩具阶段。不过,这并不影响我们的好奇心。毕竟,我们仰望夜空,只是因为群星很美丽。

[1] 加藤和也, 黑川信重, 斋藤毅. 数论I——Fermat的梦想和类域论.